Painting your electric & gas meter box

Painting your electric & gas meter box Is your electric or gas meter box looking a little worse for wear? Or perhaps you would like the look of your meter box to better fit with your house exterior or cladding? Whether you have a gas meter box, an electric meter box or even a water meter box door that you would like to spruce up, painting your meter box could be the solution for you. Continue reading to find out why and how to paint utility boxes… Painting gas meter box If you’ve come across this article, it’s likely that you have asked “can you paint a gas meter box?”. The answer is certainly yes! Here at RepairMyMeterBox, our gas meter boxes come in both metal and plastic. Our range of plastic gas meter box covers are made from a high-impact engineering-grade thermoplastic polymer material, making them extremely durable in extreme weather. Not only this, but they are an ideal material to paint over. However, your current gas meter box may not be the same. It may be corroded, weathered or simply doesn’t match well with the exterior of your home. Luckily, painting a gas meter box can help to bring it back to life! Painting electric meter box What about your electrical box? Can it be painted in the same way you can paint a gas meter box? Absolutely. Like our plastic gas meter boxes, our plastic electric boxes are made from a durable thermoplastic polymer material. This makes them resistant to corrosion, and suitable for all kinds of weather conditions. Once again, this type of material is ideal for paint spraying. But which meter box paint is best for the job? What paint should I use to paint utility boxes? When painting a gas box or electric meter box, we would recommend opting for a durable paint that will help to withstand weather conditions. Please also take special care not to paint over any vents, particularly on gas meter boxes. Using the right meter box paint is important to get a long-lasting and high quality finish. Preparation is key With any project, preparation is key. This is no different when it comes to painting your meter box. If your meter box cover is plastic, we’d recommend undercoating the surface with a plastic primer. On the other hand, if you’re working with metal meter box, we’d recommend removing any existing gas meter paint, and sanding the metal surface well. This will ensure you get a clean application that is primed to last as long as possible. How to hide gas meter in front of the house Whether you want to hide the gas meter in front of your house, or simply disguise a gas meter box at your property, painting your gas meter box is a quick, easy and cost-effective solution. You’ll be surprised at how effective a lick of paint can be at helping your meter box blend into the cladding of the house. Could it be time to repair or replace your meter box cover? Before starting to paint a gas meter box, or sprucing up your electric meter box cover, it’s important to ask yourself whether a coat of paint will fix the problem. If your meter box door is rusty or weather damaged, painting it will only very temporarily solve the problem. You could even be leaving your meter box unprotected. Here at RepairMyMeterBox, we offer cost-effective and convenient solutions for repairing your meter box cover. Whether you need a new meter box door, you’re looking for repair kits & parts or you would like a new plastic overbox (suitable for damaged gas or electricity meter boxes); we can help with that. If you are unsure what the best option is for you, get in touch with our team and we’ll be more than happy to guide you in the right direction. How to Size a Junction Box Electricity powers the devices that make the modern world run, from refrigerators to TVs to industrial machinery. But getting that electricity correctly set up and distributed within homes and businesses requires a lot of special equipment. That equipment includes conduits, raceways and the devices that we’ll discuss in this article: junction boxes. When an electrician creates splits and branches in wiring connections that run through cable raceways and conduits, they enclose the connection points within a junction box. A junction box provides protection for these sensitive connections against bad weather, accidental contact, tampering and other hazards that can damage wiring. Below, we’ll talk about how to size a junction box appropriately and determine which attributes your junction box needs to have. Before we dive in, we’ll discuss some of the basics everyone should know about what a junction box is and how one works. What Is a Junction Box? A junction box is an electrical enclosure that protects electrical conductors at the points where they are spliced, tapped and pulled. These enclosures allow electricians to easily access the conductors to perform work when needed while simultaneously keeping the conductors safe from damage and unauthorized access. Sometimes, you’ll hear the term “junction box” used to refer to an electrical fixture box. In the true technical definition of a junction box, wires should connect only to other wires and raceways. However, in practice, the term is also frequently used to refer to many other electrical box types in which wires connect to a fixture such as a ceiling fan, light switch or wall socket. For more information on the various applications and designs of junction boxes, make sure to see our complete guide to junction box types. Types of Feeder Pillars Feeder pillar panels can come as custom manufactured or standard empty enclosures. Here are the most common electrical feeder pillars that are available: Rail Feeder Pillars Rail feeder pillars are non-conductive and are available in an outdoor location or station installments. It eliminates the risk of touch voltages in electrified rail areas. These pillars can have PADS approved Network Rail equipment such as: Switchgear DC Immune RCD DNO Service Hands Isolation Transformers CT Chamber & Member Cut-Outs & Isolators LV Feeder Pillars Low voltage feeder pillars (LV feeder pillars) are feeder pillar panels that operate at a “Low Voltage” (LV), where “Low Voltage” is defined by the International Electrotechnical Commission (IEC) as a supply system voltage in the range 50 to 1000 V AC or 120 to 1500 V DC (if you’re unsure of your operating voltage, you can easily check this with a good multimeter). Electrical distribution pillars give LV power connections for single units or complex developments in the commercial and residential sectors. LV feeder pillar is used for utility substation, M&E building services, hazardous area industries, and renewable energy. Highway pillars are used for CCTV, traffic signals, street lighting power, motorway communications, and control and distribution. What is an SMC junction box? SMC Junction Box is made from sheet moulding compound which ensure excellent dielectric properties. These are available in two forms, one with inbuilt terminals and the other in plain format where the provision is there for attaching external terminal plate separately While it is true that the junction box presents a neater means of concealing electrical junctions, the real value of the box is providing a degree of protection for the wiring interface at various junction points. It provides facility to connect two or more different size of cable. Polycarbonate Enclosures Vs. Fiberglass Enclosures The benefits of purchasing a polycarbonate enclosure instead of fiberglass can be found in the strength of the enclosure, its durability, and its modification possibilities. Polycarbonate enclosures can withstand over 900 pounds of impact, which is more than four times the impact resistance of fiberglass enclosures. UV Light Resistance When fiberglass enclosures are exposed to UV light, their color fades and the fibers are then exposed to direct UV rays which cause the material to “bloom” and deteriorate. In contrast, polycarbonate enclosures are manufactured as a solid piece using injection molding. Polycarbonate is a strong, durable material that withstands the harsh conditions of the outdoors and ultimately lasts longer than fiberglass enclosures. It is also used in car windshields and headlights, because unlike fiberglass, this highly durable plastic maintains its shape, color, and strength even when exposed to direct light. Polycarbonate More Easily Modified than Fiberglass One of the major differences between polycarbonate and fiberglass enclosures is their modifiability, which includes cutting holes or changing the material in some way. When modified, fiberglass enclosures give off a very fine dust that is irritant to the skin, can be dangerous to inhale, and is so fine it is hard to clean up. Instead of creating a fine dust, polycarbonate enclosures produce small curls of material that can be easily swept away and are not dangerous to touch or inhale. Because fiberglass is made up of interwoven fibers, the material is also more likely to splinter while modifying. Polycarbonate enclosures can be easily modified in the field using standard tools without being damaged or causing health concerns. NEMA Rating All Integra polycarbonate enclosures are NEMA 4X rated, which means that these enclosures are watertight and can withstand direct water spray. Integra also has a special IP66 rated series that can be submersed in water without deterioration. Even more specifically, polycarbonate enclosures can be marine-friendly, which means that they are salt water resistant. Appearance Features Polycarbonate enclosures also have a cleaner look than fiberglass, especially when exposed to time and the elements. Integra offers custom color and design options for polycarbonate enclosures to match your application and company branding. These enclosures are molded using colored plastic so the pigment shows all the way through and won’t scratch off or fade like painted fiberglass enclosures. Integra also offers clear lids and even clear enclosures which cannot be accomplished using fiberglass.


Ver a página completa